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* 0 Propagation of electromagneticwaves, in medin Which Vary 5-
slowly with position and time Q

Ronal(d L. Fontw

.Air Force 'CamhrIdl. Rescarchl LaboratorIs., 'lkdod, A iMzss.achdet, 01730

(Received March 13, 1972;•.\;vised May 19, 1972.)

Uý.- 4VKI1 nelthods we have coniderecdq~e propagntlon of electronuainetic waves in
Isotropic losstcss ni'din which vary slowvly wida• bilt -osiiin~nnd time. It, Is found that In

______ such media the meaning of various qmnntic•,such'as the group vclocity, must be relntcrprcted.
The theory is applicdVto study propagation ln,,spnce.time, varying dielectrics, and plasmas,

I. IN'rRODUCrION required. This is the original version of the'Sommner-
A-diOl'cult probleu.to-consider-coacetplaJlyis. yave feljRunge law. This result can be extcnded',4;t the

propagation in media which vary with both position or.-diiensional case, as hasbeen done b yi'hihlam
and time. In such media our standard concepts of [1960] and IPoeverleih [1962]. That is, in-space-time
frequency,.wavcnumber, and group velocity no longer varying media -the t:,kistenee -of a uniqulely defined
apply, Tha: ist we find that frequency can be defined wave function, exp (i _' (co dt - k.dx)]:requires that
only as the tim.- derivative of the phase function and VO) - Ok/ot = 0, This is the four.dimension't-
that the quantity so-defined is a, function of both the Sollilerfeld-Ruige law.
position and the time at wlhich the observation is ll-tile present paper we will first give an elementary
made. We also find that the group -velocity no longer derivation of the four-dimensional Sonimerfeld-Runge
retains its-conventional meaning. In spatially-hnomo- law. We. will' then examine its implications, and
geneous, time-invariant media the group velocity is finally indicate its use in studying electromagnetic
interpreted as the velocity at which -%%avc packets wave propagation in isotropic, lossless media:-which
centered around soine waevector k. propagate vary slowly withpositioný and time.
[Jteffrey aihd Jtffreys, 1962]. In spacC-time varying 2. GENERAL TIJUORY
media this is no longer true. In fact, as we shall'see,
values f" w and k do not propagate with* the group 2.1. Discussion of t1e Geniralked Sominerfcld-Runge
velocity V7w; it- is rather different quantitits (which Law
are functions of w and k) which are propagated at
this velocity. The same- conclusions hold true for In a medium which varies slowly (e.g., in it dielectric
energy flow (i.e., the energy flux does not propagate the conditions for slow variation are that 0¢ >> V-k,
with the group velocity). C0 >> Ow•/t, co >> 0/0z(In, and k >> (l/•)IV•I,

In this paper we will study the propagation of where e is the permittivity or the dielectric) with both
electromagneiic waves in lossless media which vary position kind time, the WKB approximation for tlhe
slowly with iposition and time. We will therefore electric field strength can be written as
employ the four-dimensional WKB (Wentz.l- F ,
Kratners-Brillouin) method. Tile WKB method %%as E(x, t) - e.(x, t) exp i (k.dx - .t (1)
firgt applied in threedimenisions by Somnerfhd and

Rung, [19 11]. :hilit is, in ctdia in l hidh the properties vMhere o.(x, t) varys sloNly •iith position and time
d;eptnd.. ,.,n position x but not on time, Sommeflcid compariAd wltli• the xponent, and L is a line integral
and Runge considered solutions of the form in four spat~c bet%%cen some initial point (x., t.) and
exp (14t - f k.dx). A. a e;onscqtcncc of the fact that the obseration point (x, t). Fihe functions , and k
the Ih,,.a fundion must bc uniqucl) dtfinJ, Soviunni. arc gkaiedly relatcd throutgh a dispersion relation
feld and Runge then concluded that V x Ic - 0 was of the form

V.'~tialxt (.) 1972 .•y tbe-Amerian Gcqhys'lt UnWoo, w - 11(k, x, 0) (2)
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1154 XONXLD L. FANTE

or tl nlumhj vtl otll-btotwith,-timec

F where k J ki. For cxatnile, in h plasma whae-

L,(x th 1)]wn wlary wic iosjo tht not OO -v (8)

lighti thde weo.t Vs wiie observen constantqy Nalcswr,
wsne theepn en hn()rersnsvtpae fun.';, roin, ( t)nt w' lertate IXdperid). oell's lawdi'

that: the iVteran is a-pufarC( dirorntal (9.erreorefordiclssar

cetrdabou 't sonme frequency wo will propagate with
Equation 4 is the foo'rilitnaesionat; vuesioq. ýD the the-group-.velocity V (evallated [tCat* Q.

LSon'imerreldl.Rungv law. This resuk ýcanl w! nuteeily For the general ease when the properties of thie
-be deiplbenlyigrsto-ae( ½Y~,!14ililidcpcnd Qn, kU~j .pqsitidr~ andO Lhm4e 1ither
as -has been dlone- by Liguhthll and Wlidtham,---15] no -ilb invarian as onell mv fOlgte 'ray
Equation 4- has also been-- conshiered--by -Wdllhath %vith the griup velocity V. (I lowever, -it thle next
11960], Poeverlebt (1962], and -Landaut andtill ehI subsection we do showv that there are velocities
J -1959]. V"k) 0 V,-and V1" iA V with wivhkh valties ol k and *iw

tire propagated1 in space-time varying mnedia). In-thiS
2.2. Discussion of thef'roperdes of Eqiyatlo,: 4 case-other quantities will-be invariant-. if thle motion.

2.2.1. Generalk-ed group velocity. To disculss tile Consider each scalar component or (5), Nve iiave
properties or (4 in a mcditim which varies with both
position and timec, let its suibstitute (2) into (4) Using 0110Ot + WVV)k, -(0

the act hat xk , wegeto solve (10) we consider the subsidiary set
Ok/Ot +.f (V -7)k - (V 0%~, 1 (5)1

V -Vh I (6) ILet mus denote the particuilar litegrals of (11) by(oTkz~ f(kl, x, s - Ci, g(Aj, x, 1) *AC 21 11(kg, rj t) -

Thle quantity V'1,4 (6) canl be interpreted us~a general- Oki,x, X 1 ) Cj. Theni it qun be shidwh--hat (Sa.'ddoii,
Ized grolip -vcloe~ty ats we shall see in thle following 19571 (a1) thle gcmieril soluition orf(10) Is glw~m by
discussion. 'Uponi defining d/dIi /Olf + V*V C,- '14c'., C'. CJ) (12)
equation 5-can be rewritten ats

A/111 -M~nk1 (7)where +I Is ail arbitrary funiefoo. dctermined by lthe
(Ik/tl (V (7)boundary condlitions lnmljoe and (t)) lthe lnv-ariamit

From (7) we see that, if W1 (Ives not depend explicitly Of 1110tl011, r.or anl observer utlovio, w~ti th~ wIN:ý%Ikty V
on position, then dk/dt 0 . This-mecans that if one give"i 41Y 6) are C',, r,;!. C', and C'4. That Ii, vach
moves along thle ray with thle velocity V, lie will C't satki.,,1e
observe conm'ant values-ar it (i.e., thie observer moving X.C'dl 0i s 4 .. - V.V74% -- 0 11 )
with V, measures constant values of wavelength),
Therefore, ir uis a function. or k, and t, but docs not Thererore. for n1odi- whakh %.try ý%itli hoth p-iiti.n

- ~~-depcind explicitly onl x, thu~n It N a constant or thle and time, the pto~.lic l rQip N,4M-tv J tzncdA
motion, so that wave packets sharply centered atimnd In (6) 11 the %,slovity uiih wlmk-h th Ow~ iV ( , arej
some wavenuniber It. will be propac.1te' wihi V - prop4.*1toL. It j, .'ul i-h e 1,1:imilt of kjxjm-ll~ll Iloato
OW/Ok evaluatcd at It -It.. Ulleomm'i, timc-imalmw mt ImF. I't timit UIW'.iý .t VI~C

To examinle thle otber limit whcal We properties of von~tantC, can tv 0,i irLA: %%ilh _ýamt,;-
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In section 3.1 we will calculate the constants of k(d/di) + Vkk(V K).,, m'--`-I1k,a (20)
motion. for, several examples of mcdih wlich vlir> *mos 20 is vahid for anarbitra•-lossless isotropvy
witlh position and (mc, medium. To obtain the analog. o- the ray-normal

2,2.2. The aqlle beu'ecen V em(d k, In lthhis: qtb-
section we will demonstrate timt in isotropic ios+l.•+is- ecquation of (0tdau-o dal F•cr tii:j c59as, we next

media the normal I " (k/k), to the phase surf'ace s pecialize (20) to d vitec t y. Fo t li mit (20)
O(x, 1) licslai the same directionas the group velocity
V. We will also calculate the angle' betwecn k and V becomes

Tfr the case of it simcpletisotropy. dl/dt - -( ,Vv) -Vv(x,,1) (21)
k-us consider (3) for the case whorv tlie dispersion -Equtdion,2l determines the-motion of tlih-ray normal

, rtfon can be written, 15 fit djieectrics wlhich, vary slowly- with both position

k - o,•O,.r,•i) r(14) anditme. As demonstrated by Landau and Lifschitz,
Ober* 0-js the angle which the vector k makes with who obtained the s;,nie equation for tile case when
tiho; axis, (Timc-corrcspods to tie case in whieh the v varies with position only, (21) predicts a bendinp
dispersion rihatiojs giveyn by the Appelton-ilartree of the rays toward tile region Where v is smaller;
frmnula), Using (14) in 5); we find, upon diffcren. We also note fromn (20) and (21y that if v is idc-
-tatng p h h -pendent ofipositimO-but-docs depend on-tiiciwil-havc-

V, I 0ct/b)tk- O/k)O 1lOO)1 (.,5) Akdt - 0 (22)

Upon taking the d•naid cross products of k With (15) Thercfore, its expected, the ray does not change its
we obtain for the tingle -y between'k nind V direction of propagation in media which vory- only

Ok With (line.Itn Yla j ' Ik x Vj/k, V k* k"t k"• ' wlthtl),
.V k ' O K (16) 2,2.4, Temporal dfiscontiteddes, it is often desirable

to know the bihavli Ior of w and k when the properties
For isotropic iedlit(k Independent -of 0) the aingle of tile mcdhim are suddenly altered. For examiple,

0. liquOatict 16 is a well-known result front the suppose-We-have ita ýilelctrlc-in which c - it(xY)or
study of Whistlers [(11lt and Ilak(ell, 1965; Klso, i < ,, e - t(x) for t > t,.To study the behavior
19641, We have shown licre that thd result also applics of tco od It w, temporal discontinuities occu r let us
to nlcdla which vary slowly with both, position IlInd intgre (4) fron - 8 to 1t + 6 (note tlhat (4)'
time, provided we understand that V is not tile velocity Is not-strctly valid for i4 0). We obtain
with -whlch-yalues of k atnd o are propaatctd,, Oiut
flninlNsuAtofintercstIstouse(16)rind(15tocalt-iate k(x, to + 6) - A(x, to - ) -• (Vw)a' (23)
tle magnitude of the group velocity, \Veget"-

Ito 10 k/f1f ý €os"F - (17) fi tlie limit us 8 -ý 0 the flght.hitid side of (23)
vanishes, mtnless Vto has a delta-fItiction behavior;2.•:1. 1"1w equation of ,oioim oark. In this subsection therefore,

we Shall dcnionstrite that the classlcal equation

ptresnted by Landallul amd tfcchit: [19591 fir -the I(x1 it + 6) - k(x, tj - 5) (24)
motion of the normal to O,(X, Ot, can be gnerailized Since (24) Implies that botl'tlbnie giiitode and direc-
to inctid d spa,,-tinme ,aryint mnedia. For isotropic tioli of kI vlanlot chnage instantaneously then front 3)
inedla %ie w•rite. usils It k i- Ail (5) we may write

1 0 4 1) I' . tx, 1 - -l- 5 ),.z , I, I

Wet 1cXt u1s tlw aib r.-t,.n t rd,'rionl of (oi In tile - Aýtw(x. tj - 5), x, 11 - (25)
se~ofMl t,;rn •o thon f tlmt(arid stidc of 118). AVs: oblmn.-
Att4f.- rk ,,twi'ig tctlim For i d,:lk.ttric. in whkh K - :,4x, tpI~t(x, I)]'",

i!$ t t !•lJ '1,, til (25) ithids

I i.,t V + V,-1V A I - IIV WIh, (19) wfit. I + 4) -J[•Ex)/eAx)l'oe(x, t - a) (26)

lh:e ;' V' -t.''I ' Now iulhstjitnt (9) loor Tli 1 pfiltioc tsigit in (261 is appropliate for-tle wave
d.w d: tot g Ilk') 11 v1. 1i tt transing Mloog k. while the jivgmtivo sign Is oippro-
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.'pflaie for, the reflected component w~hicls travels Thle 'intcbifal is ~along thce ray path in -the medium
-along --k. This latter component is negligible in between the transmiier and 'tWa observer, For -tile'
,tile WKB limit. In the limit~of a spatially hiomogene~ous spccidl case of a dielectric, this requires that, in
ciklcetric, (26) reduces to the previous result of addition to the condition that the nmedium vary slowly,
Aforgentlmak'r (1958). thle pailh lcngthI in thle -mcditu cannot be so large

2.3 Veociy o Prpd~t~7 ofVales f kandthat f K ds >> 1. When, (32) is satisfied, we may neglect
2.3.Velcit ofProi~t', ýi ýf Vlue ofk ad w the right-hand -sid 'e of'(8),,and-coiicl ude'-as a lowest-

One~of -die points~we have made is that-in a space. order 4pproximiation thlat w 'is. a constant -of the
time varying mnedium neither co nor k-is an invariant' motion. Furth~ermore, if (as, is usually' the case) we
mis one moves with 'thle group velocity V =Vtw. specify that w -ý wo forAll time at the position of, thle
However, it is possible'to de 'line a new velocity Vk) transiiiitter, then w t- wo for all, x and 't(for which (S2)
ýsuchvthat k wiill W~constant when-the observer moves is still satisfied). Using w a, coo then givcs
with this' velocity. Tp' obtain It"), let uts suppose that Ow/1140 X, 1), (33)
the solution-o.5~ given by k(x, 0); Then we canl

,ýIcfine a~velocily'V'through the equastion where n(w,, x, -I) is tlie'indcx of refriicticun,Adefined by

M(V"* -V T )R%. (27) IkI (wr. Equation 33 is, of'course,:tiec stal -dard-
'ckonal used in, ray optics. Similarly, -for 0 we hiavc,

Ok/Or + P( + -V)-'Vk -0 (28) i~oef10 X1 g)ýdx - (410( (34)
4rom wvhich we immediately identily

~ +~ '29)where, ats bcfore, k is- the unit vector normal toteVI = A-v (29)phase surface, and, is dctermihipt!" by solving (33).
Equation 27:can be solved Cor V~by standard mantrix Finally, since w -~ -oqi/at we liewe for:4hq first
methods. it-'is initeresting to.coisiderithie one-dimen- iteration to the insttianikious frequelicy
sional, limit (I.e., 0of~x 0/0)y 0). Then (27)
become'& W C:ýW - ((cO/c) J I [o(w~~o, x, t1)1/O) (Is (35)

'(0 l'/Z)~ 30)where dv - k-dx -path length along the' ray.
~vheh s ~eailysoledf~rV'.Usig hisreslt Equtatio i 35 is 'the result used by, ionospheric rc-
whic isreailysoled or V. Uingthisresltsear'oers~in studying.4the 'oppler shift througfrvan
alon ~vth (), n (2) tengies ionosphecric region whlicit *'varies slowly with path
(on'o\it /(Opýj/(31)position and time [11-'oekes, '1958; Kelso, 1960, 1964;

Yi~1 +j~)g/'Z) 31)Ghtn-burg, 1964; Blennett, 19671. It is evident, froln, (32)

Therfor, w- hve dmontraed t isposibl to and' (35) that (35) Is valid only when the l~oppler.
Theefore, wte'oit hav deosuhtrate it ipobssibler t shift is small co'npared'w~itlh thle transmitter frequency.

defne veociy V~' uchtha th obervrloving F~or most problems of -propagation through thie
With this velocity sees constant valtics of k. A similar earth's iotiosphecre, (35) i6 anl adequate approximation
omrgumient holds for w. for the Instantaneous froltiency, -1 l owever, there tire

2,4. Approximatie Solutilon of Equation 8 laboratory 1)hismaus and somle planetary atmospheres

In many Instatices it is diflicult to obtain exact (e,g., Jupiter) where (35) may not be it good epproxi-
nation, lin addition, the constraint or (32) maty not

solutions of (5) iuid'(8) for space-timec varying media. hol1(l in m,,,nly bpc-ie aligdil)rcs , h
This Is especially trute wilgh dispersion is present. nex setin deii tuyt elexctris solutioleo
However, when the frequency shift iii pr~pagatlttg (5) and (8) In some (dielectric materials.
through the medtium is smiall compared with the
,transmitter frequency, it is possible to solve (8) by 3. APPLICATION TO ISOTROPIC,
iteration, Let u~s consider the limit When LOSSLUSS DTMLLEcICS

f' (0~ K10t) (Is << (32) 3.1.Calculation of Ilto hinariants, W, and k In Dielectrics
WVe wvill now use thle results of section 2 to study tho

where, as bcforc, 'k -K(w1 , x, 1) and ds -k-dr. propagation in lossless- dieclectrics with permittivity
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varying slowly with position and time. To simplify For the variation of (41) the constants C, and
the problem we will also assume that the propagation C,, are
is in the same direction as Ve, which we choose to be
along the " axis in a rectangular coordinate system. u ep [S(:)] = C, (42)
For this case (8) becomes I]t exp t--S(:)] J d:' fi,,(:') exp [-- S(.")] = C2, (43)

Ow/41t + I-'t(0/O:) -w(O/Ot)(In $) (36)
where S(z) = fi[(z) dz. Upon uwing (42) andwhere /I=(t,('= From the theory presented in (4)nthgerasluonC= ',,)wgt

(II) and (12) we know that the solution of (36) (43) in the general solution C, = P(C.) we get

will have the form C, = 4,(C-.) where C, = t,,,z,t) W•(:, t) = exp [-S(:)',I,
and C. = g(, z, t) are the particular integrals of

d / -dw jw[O(1n M/061 (37) exp [--S(:)] - d:'f / 1(:') exp [--S(:')] (44)

The wavennmber k(,-., t) is relatted to •,, by k =of
We discuss the solutions of (37), below, for several

We can determine the arbitrary function ,,(...) by
.1I.I [a separable. When/fi is separable we may specifying boundary conditions on w. For example,writ 1. 1. separable). Whn this caseponabe wmbi suppose we specify that .,, = ",, for all t, at z = 0.write f =/rs(z) fa!(t). In this case, upon combin- (This condition is appropriate for the case of a plane

wave of frequency o,, transmitted into a space-time
CelAt) = C, (38) varying half-spacc). This requires that, in (44), the

Therefore, the observer moving with the velocity function constant. We therefore obtain

V = f1- finds that @/3'(t) is an invariant. Similarly Fr f (45)
combining the first and second members of (37) " = '0 e' - $,(:') •'jcobiin g thfis I
we get In the limiting case when p, and fi, are independent

of z this result can be readily shown to be identical
0,W) d: -- 1 dt'/ 2(t')] C2  (39) with the previous result of Morgenthaler [19581.

It is also possible to obtain the constants of mo-
so that the general solution of (36) when fl is scp- tion for other variations in fl. For example, sup-
arable is pose fl is a function of z - rj. Then it can be

h ft sowvn that ,.,(z. t) [I - v, /3(z - vj)] is an in-
w0(z, 0) = [3A0F'(t,|, 0i(:') d: -- dt'/lf.,(t)I variant of motion, except in the limit when v. ap-

proaches the phasc velocity in the unmodulted
(40) medium. (This is known as the sonic region and

where the arbitrary function .I, is determined by has been discussed in detail by Ilessel and Oliicr

specifying boundary conditions on a,, long any curve [19611).

in the z - t plane. For example, if I._, did not de- 3.2. Time of Trwtsit in Space-Time Varying Dielectrics
pend on time, and we specified ,, = at z = 0 for Since the phas. and group velocities in a space-time
all t, then ':, = constant, and therefore , = con- varying medium are functions or" position and time,
stant, as would be expected. it is not immediately evident how long it would take

3.1.2. Taylor cxxpmvion of P1. The situati..n when for a disturbance to travel a( distance L a;ong a ray.
11 is separable, studied above, does not usually To study this problem let us consider the motion CA'
occur in practical situations. However, there ire the point at which the phase , = 0. In particular, let
often problems in which it is appropriate to expand I's suppose 0 = 0 for i = t,, at some point x. on a
/I(z. 1) in Taylor series in either z or t. For cx- given ray. Then the time tj, at which 0 = 0 will reach
,mple, we can consider the case in which we desire another point x,. along the ray is a solution of

to :;tudy the propagation only over the time interval
t1 _< 1 < t... In that interval we may expand fl in J (k.dx - w dt) = 0 (46)
Taylor series in I as

To study the solution of (46) let us specialize to the
0(-, 1) 0 ,(:) + tA,(:) + ... (41) case when k and Ve lie along the z axis. If we assume
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that the initial point x. is z - 0 and the observation where t, and k arc the appropriatc solutions of (36)
point is at : 1, we can rewrite (46) as and e,,(z, 1) is the appropriatc solution of (69). For

(h. 10example, if f1(z, t) = /fi(z) pl(i) then

(k d: - Wt) - 0 (47)

Since the line integral in (47) is independent of the (),1(

path, it can be taken along any curve joining (0, t,,)

to (L, t,) in the z-1 plane. For instance, we shall Now suppose the slab occupies the region 0 < z < L,
find it convenient to write and a plane wave E, exp [iw11(t - :/c)] is normally

incident upon thc slab from the region : < 0. Then

k(:, 0) t: = w(L. t) dt = 0 (48) the field transmitted through the slab at time t., into
J,. the region z > L, will consist of a number of corn-

Equation 48 is an integral equation to be solved for portents. First, there will be a wave which (from : < 0)
the transit time (tt. - t,,). To understand the mean- crosses the : 0 boundary at time r, and is trans-
ing of (48) let us first suppose that #(z, t) is inde- mitted directly through the dielectric, arriving at
pendent of t, and that at ,,,(z = 0) is specified to : = V at the time t.. Next, there is a wave which
be equal to , for all 1. Then since ,,,(z = 0) = crosses thez = 0 boundary at time 7,, and arrives
'(z = L) =., (48) becomes the obvious result at z = V at the time t. after being internally reflected

at time r• by the : = L boundary and at time r, by

1t. - . -. - d:/V(z) (49) the . = 0 boundary. Next, there is a wave which
.JO (from z < 0) crosses the z = 0 boundary at time r6

where V(z) = fp,, (:) /'. In the other limit when and arrives at : = V at the time t., after being

3(z, t) is independent of z, we get (assuming k(t = reflected twice at the z = 0 boundary (at times r,
t,,) = k,, for all z) that t,. is a solution of and r,) and twice by the : = L boundary (at times

71 and r-,) etc. Let uts define R(O, 7) as the internal

L = VW.') dt' (50) reflection coeflicient at z = 0' boundary at time -,
R(L. 7) as the internal reflection cocfficicrit at : = L

which is the result obtained previously [Fante, 19711. at time1- (for the case in which the medium is spatially
As an example of the application of (47) to homogeneous R(0, 7)- R(L, T) I-(r)/t,,]t - II

dielectrics which vary with both position and time, I[+(r) I,]/ I- V), T(r) as the transmission coefli-
let us consider the case when ft is given by (41), cient, from: = 0- to: z= 0' at time r, and P(r) as the
along with the boundary condition that w= 4o,, at transmission coefficient from : = L- to z = V.
z = 0, for all t. Using (45) in (48) then gives for Then, the transmitted field at : - V can be written as
the transit time E(: = L%. I = 0.) = f(t,)T(rg)A(r1 ) cxp (Iwor 1 )

S - t+ T(ra)A(r3 )R(O, r,)R(L. r2) exp (k"'11r3)

- exp [S(L)] f l ,(:') cxp [- S(z')l dk' (51) + T(ra)A(ra)R(O, 71)RkL. r,)R(O, 73)R([. r,)

where .cxp (iaowr) L" ...- (54)
where A(r) = e.(: = V, i = I.; :. = 0, t. = 7).

S(-) T 0 1,(Q) d( From (54) it is clear that the nature of the transmitted
field will be known once the times r,, 7-, 7,, -.- have

3.3. I)iscussion of Transvmission Throu.gh a Dielec- been determined. Extending the discussion of section
tric Sla5 3.2 we see that these are solutions of the equations

The results of sections 3.1 and 3.2 can be applied r
to consider the transmission of plane waves through f kw(O, ' dt  (55)
a lossless dielectric slab of thickness L in which the
permittivity varies slowly with space and time. Let
us denote the solutions in the slab by -r k(:. r) di: = J,. (L, t') dt' (56)

E - e.(z, t; z., t.) Cxp I[ f (Wi df i k d:)] (52) k(:, rj) d: = f w(O, t') di' (57)
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Therefore r, r2, and r3 could be oh taied by first r 3, 4
solving (55) for r,. Then, using the solution of (55) Di T(rr 1)_,t,)[ '( J
in (56), the resulting equation could be solved for r,.

Equatiop-54 can also be applied to the case c¢f .1XP toior0 .•°) IiR(r)
%unsmiiý:)n into an infinite halr-spa•,.x We cin-
"oitain thfsfirnit by seiting P(t.) = land J'L, r) 0. F )1 - -
We therefore obtain for titn field at , point z, at time f. L 1.o)! (67)

E(z., I.) = "(r,)A(r 1) exp (Iwo07) (58) From (66) we see that the transmitted signal con-
where 7, is the solution of the equation - s- -i sts of compnrp •its at the instantaneous frequencies

Q ,,. 1:1. fl,, ' -. This interpretation assunit. that
k(z', t.) d:' W j o(0, t') 1t1 (59) B,, is a s!. 'ly varying function of time in compan-iton

T with exp (Mint), which is the case in the WKB
SWhen pe, t) is given by (41), we can use the approximation. The importance of the frequency
results of section 3.2 to cxpr,'ss r as components at fl., 0,, 0•, in comparison to tha!resus oat 0, will deptnd on the amplitude of the rcflcctior|

coefficient R. For R << I only fl, %i ill be significant,.r, - I, -exp [S(:,)] o(' exp [-S(:') dz' but for R near unity this conclusion is clearly not
(60) true.Oacie r, is known, T(r,) can be obtaiitcd by apply- Therefore, we see that, because of the spatial- ing the usual WKB methods to the profile e(z) = boundaries, the transmitted signal has components

1A1 [p,,(z) 4- 71 I'(z)]". at 111, 0", 123, . and not just at fn, as found byAs an example of the application of the more gen- Morgenthaler [1958], who did not account for bound-cral result of (54) let us consider the case in which ary effects. For relative pernittivities near unitythe dielectric slab is spatially homogeneous. Then the components at (.., a.,, will be negligible(54) becomes compared with those at al. However, for large rela-
E(z = L% t = I.) (t,[Txp (ho tive permittivities the higher-order frequency com-E[. xponents will be significant.
+ T(r3)A(73)R(T)R(rP CXP (IWOr 3) 4. RAY TRACING METHODS
+ T(s)A(?3)R(T,)R(72 )R(r3)R(7 -4) In the general case when the direction or propa-

exp (I•wors) + .. (61) gation is not along Ve it is not a simple matter to
where solve (5) or (8) for either space-time varying dielectrics

or plasmas (in fact, for plasmas we cannot generallyA(r) [e(r)li[((t.)l}' 4  (62) solve (5) or (8) esen when Vw, is along the direction
and7 is the Solution Of of propagation). In many cases it is acceptable to

use the approximation of (35), but for others thisI m fa my not be possible. In such cases it appears mostj v(t') dt' = L n =- I, 2, 3, ... (63) appropriate to approximate the temporal behavior of
TO examine the various frequency components pres- the medium in it stepwise fashion. For example, in a
ent in the tratnsnittedl wave of (61) we can Taylor- dielectric during the interval 0 < t < tN the permit-
expand the functions rT(t). That is tivity call be approximated by t = (x) for 0 <

S< t,, t = t(x) for I, < t < 12, . I = ev(x) fort. . + (t - 0,)(Or./Ot)'. A . (64) t._ < < I.v, where 1(, -- j-)/e,I << 1. In a
where plasma we would approximate the electron plasnma

frequency w,(x, I) by: w, = w,,(x) for 0 < t < t,-io,'ot),= [v(t,)ji[v(r,)J = (T.,,/[tt,)]l "• (65) w,. = w,,,(x) for t1 < I < 12, . , ", w,.(x) forUsing this result we may rewrite (61) as: t'V_' < I < ItV It is a'suinled that (w,, - w,..)i
•o,,,I .:< I for j = I, 2,... N.

E ,- = }2 B, cxp [11?,(t - 1.)l (66) To illustrate the method we will consider a space-
£ time varying plasma. We suppose that the pla-,mawhere ooupies the hialf-space : > 0, and is spatially stratified

k;



I160 RONALD L. PANTS

in the direction only. We then assume that a signal f "ws()I' /
with frrequency slpcetrum, sharply peaked about w - w, = - LSJil 0(-) (7 2)
enters the medium tit all angle 0. relative to the . axis.

We will follow the progress or two distintct points where the new frrquencies w, antd w,' associated
P and P' on the envelope of this signal (in a dielectric, with P and PI (recalling that since 1P and /' travel with
P and P' could rcpresci*t two separate values of phase, the local group velocity, the frequency associated
tlhe progress of which we follow). If P is located Lit with these points remains constant during the intcrval

- 0 when I = ,,, then by Snell's law we have that 11 < / < ?) are
the ray path rollowed by P in tile time interval (Q,, /)
is determined from[
[I - W,,' 2(0)/W ]'"3  sill 0. P1 = • - W",,,I(:') + WI2,,/(:,A)]/ (74)

S[-- w•v1 (-)/w. 2J''2 sin 0(:) (68) Therefore, in a space-time varying medium, not only
will differcnt portions of the signal acquire difT'crcntThe point P moves along this path with the group instantaneous frcquencies (cven though both P and P'

velocity IV•(:)I = cI - w,=(.-)/wa]/"2 so that during entercd the medium with thc same frcqucncy), but
the time interval , - i. the distance S travelled along differcnt portions of the signal will also traverse
the ray by this point is the solution of dilTerctnt ray paths, as is cvident from (71) and (72).

''s/ V( (69) It is clear, then, that in a space-time varying plasma
we must ray-tracc independently for each point on the

where the integration is along tile ray path (in iso- signal envelope, since the ray trajectories for different
tropic media the ray and group paths arc identical). portions of the signal are diffcrent (except, of course,
Consider, also, another point P'on the signal cnvelope, in the limit when the direction of propagation is
If P' is at = 0 at t = I', then P' travelses the path along Vw, or Ve). For each point P followcd, the
given by (68), except that the distance S,' travelled above procedure can be repeated continually during

ogturing the interval - I other time intervals (i.e., 12< 1 < /03, < < 1 < ....along the ray by this point until the location and frequency of P at t - t has
is thle solution of,

been obtained. Of course, if !n any regime of space
S- f,,' f ds/ V :) (70) (or time) we reach the situatien where w is close to wo,

the WKB method is no long•er valid, and we must
Now suppose that tit 1 -= - 6(a -*-- 0) the point P perform a more careful analysis (see, e.g., Kelso [1964]

is located at x = x, (i.e., x = x, is the coordinate of S,) anti Gihtburg [1964]).
and the ray path at this point makes an angle O with 5. COMMENTS ON ENERGY FLOW
the : axis. Wc also assume that at I = 11 - 6 the
point P' is located at x = x,' at which point the ray In a space-time varying medium we have found that
makesan angle 0,' with the axis. At i - the plasmn values of w and kI are not propagated with V = 'kw;
frequency is suddenly changed from w,,,(:) to w,,,(:). therefore, we should not be surprised to find that
By virtue of (24), 0 cannot change instantaneously energy flux does not flow with this velocity either.
(since k cannot change in cith r magnitude or direction To consider this problem let us first discuss lossless,
at finite temporal discontinuities in the properties of isotropic dielectrics. \Vc can then demonstrate, upon
the medium) so that 0(i - 6) = 0(i + " ). Therefore, using (I) in Maxwell's equations and employing the
in the tinic interval ,i < I < 12 the ray path followed slowly varying assumption, that e, satisfies
by P is determined rrom k(Vi. e,,) - e,,(V'k)-t- 2(k.+)e,

{1 - sin 01 = -I.,,.(.,c;,,)--2w(a#/a,)]-t-.2ae 0/r,)l

= I -- Lw- J)iL 0(z) where 1P = In i. We note that (75) reduces to the
while Life path followed by P is given by results of section 3.1.3 in Born and Volf[1959] in thelimit when ( does not depend on time. We now

consider the limit when k xVc 0. We then have
( L - r~ ~ rom (75) that
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(€l/dt)(k'/o) - (k'"e.)(0/0t)(In v'"") (76) where V - (ck/,w) - group velocity, and cAk' -

where v - [M.t(:, t)]-", and d/dt - O/t0/ + v O/Oz. W2 - W".' In obtaining (81) we have assumcd that
(76) may be solved fr e, by thLe plasma is electrically neutral so that V.E - 0.

tuegation (7) alon te 0haraly tolved o b If (81) now is formally integrated along the charac-
integrating along the characteristic to give tcristic we obtain

r, ~~~~O t."',.o ,)o '/2"
,..(:, t) =L• )'J .,)4.(: t0 4- •.(0, t,)

.CXP (01{O0t')(In 0"/) dt'] (77) [ cxp L' (0/0')(ln V'2) di'] (82)

where t, is the time at which the signal present Ut (z, t) where t, is the time when the group was located
was located at: -- 0, and the integral in (77) is along at : = 0. The energy fl-lx (Poynting vector) I =
the; characteristic. Using (77), we obtain for the fluxI (/so), , le" = (,kh,.) /A.1' is given by

I (k(O. ,)]/(w .) Ic.(o, t,)l' j/,,,, k(o.:) 1. 2)

•xp [3 Lf (O/Ot')(ln v) d'] (78) [V(11 1x , f, (OiOt')(In V) dltl (83)

We next return to (8), specialized to a dielectric. The
formal solution for w is We note that in a plasma I/w is not an invariant

since w is no longer given by

W = w(0, t') exp (t7/01')(ln v) dr' (79) I(0/0,')(,n V) d']

where the integral in (79) is again along the charac-
teristic. Using (79) in (78) we find that However, it is possible to obtain an approximate

invariant involving the energy. Following Stepanov
I/,--- [e(0, t,)/i.]''1 keo(0, t,)I'/[~o(0 i)]I [19681 we consider a pulse with time duration f, at

= constant (80) position :, so short that w can be considered constant
= ) from t to t + 9. We then have upon integrating (83)

since t. is an invariant (i.e., (0/01 + v 0). from I to I + 9

Therefore I/a'" is an invariant of motion in a space.

time varying dielectric, so that, once c•z, t) has been -I fI+
9

determined, the energy flux I(z, t) follows immediately wj I dt - #°- dt' k(O, t,) IA,(0, t,)j2
from (80). For the case in which e depends on z only, r
we have, from previous considerations, w = con- . fxp (O/ot")(In V) di" (84)
stant, so that for time-invariant media we retrieve fron II I
(80) the well-known result that the flux I is invariant. To perform the integral in (84) it is appropriate to
In the limit when the dielectric depends on time, but change the variable or integration rrom 1' to t,. This
not on position, then k€ .- u.<u.e" = constant. requires calculating (0t'/Ot,). The time, 1,(:, 0, at
Using this in (80) gives the result that, in spatially which the signal present at (z, t) was located at z = 0
homogeneous dielectrics, i(1)l - constant. is an invariant of motion, and therefore satisfies

Let us now consider the case of dispersive media (o/0t + v o/oit = o. If we differentiate this
and attempt to discover whether a result similar to equation with respect to time we find that
(80) can be found. We consider a lossless, isotropic
plasma in which the wavevector k lies along Vw,. if (0/Ot + V 0/0:)(4,/00) -= [(0/01) In V](0t,1/0) (85)
we write the vector potential A - A. exp (1,), where
V..A - 0 (radiation gauge) and E - -MA/8t we Upon solving (85) for (at,l/t) we have

obtain Ir
(d/dt)(k"' A.) - (0/01 + V 0/Oz)(k"' A.) (0t/t) - exp ,i (0/0t')(In V) dt' (86)

- (k"•A.)(O/0tXIn V"') (81) Using (86) in (84) we may write
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W/hj (.hr', 1 ' dt, k(G, tj) IA.(o, tj12  tion. The absorpti6n is then included by multiplying
fit' the field by exp (- 'f k"dx) where the integral is along

constant (87) the ray path, and' k" is the imaginary part of k.
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